Enzymatic Manipulation of the Site of Spinal Cord Injury Allows Better Survival and Adhesion of Allogeneic Homotopic Fetal Transplants in Adult Rats

نویسندگان

  • I. Grijalva
  • G. Guizar-Sahagun
  • H. Salgado-Ceballos
  • A. Ibarra
  • R. Franco-Bourland
  • A. L. Espitia
  • I. Madrazo
چکیده

Spinal cord (SC) contusion in rats yields an experimental model of SC trauma in humans. This model has often been criticized for its lack of reproducibility. Both histological observations and functional recovery cannot be reproduced consistently. The recent demonstration that homotopic fetal transplants in newborn and adult SC can improve locomotion, discloses the ability of fetal neural tissue to partially restore SC function (Kunkel-Badgen, 1990; Stokes and Reier, 1992). A necrotic area at the site of the lesion is formed in the first days after SC contusion. In the later post-traumatic stages this area evolves into a cavitation. Host-graft integration of tissues transplanted into the lesioned area at any stage post-lesion will be diminished or prevented in acute stages after trauma by necrotic tissue and in subacute and chronic stages post-injury by cellular and scarring tissue (Reier, 1988).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes

     The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...

متن کامل

Effect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury

Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...

متن کامل

Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury

Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...

متن کامل

O2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model

The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...

متن کامل

The Effect of Four Weeks Low-Power Laser Irradiation(660 nm) on Thermal Hyperalgesia in the Model of Spinal Cord Injury Induced in Adult Male Rats

‌Introduction: Spinal cord injury is one of the important unresolved problems in the medical society leading to adverse consequences, such as motionlessness and neuropathic pain. Neuropathic pain is seen in both forms of hyperalgesia and allodynia. In this study, the effects of low-level laser radiation on hyperalgesia pain have been investigated.   Material & Methods: In this experimental stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Neural Transplantation & Plasticity

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1992